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Arguments in favor of the nondifferentiability with respect to initial data of 
some functions associated with deterministic discrete-time dynamical systems 
are presented. A correspondence between a discrete-time dynamical system and 
a deterministic scattering model is found and used to interpret nondifferen- 
tiability conditions. A connection with random walks is also found. 
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1. i N T R O D U C T I O N  

One of the characteristic properties of strange attractors is a sensitive 
dependence on initial conditions. Discrete-time dynamical deterministic 
systems, corresponding to one-dimensional maps of a given interval/ ,  

an+ 1 = f ( a . ) ,  a . ~ I  (1) 

are perhaps the simplest models displaying a sensitive dependence on initial 
data. We shall study the dependence on initial conditions and related 
phenomena in the system ~1-3) 

a . + l  --- 1 - #a 2 , # ~  [0, 2], a ~  [ - 1 ,  1] (2) 

The notation a .  = a.(u; #), u = a 0, will be used to indicate the dependence 
of a ,  on u and #. The process (2) becomes and sensitive to initial data for 
#>/zc=1 .401155  (except from small intervals of in which a periodic 
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behavior is observed). (4) Intuitively, sensitivity to initial conditions of the 
chaotic regime may lead to pathological properties of the function 
F(u;#, {/.}) 

r(u;#, {/ .})= ~ lnan(U;#), Eln=L<cx3 (3a) 
n = O  n 

since its derivative with respect to u 

F'(u;p, {/ .})= ~ l.a'.(u;#) (3b) 
n = O  

may be ill defined [-it is assumed here that the series (3a) can be differen- 
tiated formally]. On the other hand, F(u;#, {/.}) is continuous, since 
]a.l~<l for all n and -L<~F<~L. In the case l.=r", r~[-O, 1), 
F(u; #, {r"})-F(u;  #, r)is the generating function of the sequence {a.} 

F(u; #, r) = ~ r"a,(u; #) (3c) 
n = O  

The form (3a), the functional transform of the series Z ,  a,, is often used in 
the theory of divergent series. For example, the generating function (3c) 
corresponds to the Abel method of summing a divergent series. 

It was reported that in a discrete-time dynamical system a nondifferen- 
tiable surface may arise. (5'6) This phenomenon deserves a systematic study. 
Discrete-time dynamical systems of the form (1) are a good model for 
investigating conditions under which functional transforms corresponding 
to sequences {an}, generated according to Eq. (1), become nondifferen- 
tiable functions of the initial data (presumably in the chaotic regime). 

A correspondence between the discrete-time dynamical system (2) and 
a very simple model of deterministic scattering is described in Section 2. 
Conditions leading to nondifferentiability of the associated functional 
transform F(u;#, {/n}) are determined and expressed in terms of the 
Lyapunov characteristic exponents in Section 3. Computer pictures of some 
of the generating functions are presented in Section 4. In the last section a 
physical interpretation of the nondifferentiability of the generating 
functions (3c) is given on the basis of the deterministic scattering model. It 
is also shown that the same generating function (3c) is related to a random 
walk process. 

2. A D E T E R M I N I S T I C  S C A T T E R I N G  M O D E L  

It would be useful to find a physical model which could be described 
in terms of the variables of a discrete-time dynamical system of the form 
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(1). We shall show that nondifferentiable generating functions may arise in 
the description of a very simple deterministic scattering model. 

Let us consider a particle passing through a scattering medium. To 
specify the geometry of the scattering process, we use polar coordinates, 
taking the normal to the target as the polar axis. Since we are interested in 
a multiple scattering process, we consider a particle after the nth collision 
inside the target, incident on a scattering center. The particle direction unit 
vector after the nth collision (2 n is equal to 

(2, = (o~, co 2, co 3) = (sin ~9, cos r sin ~gn sin q~,, cos 0n) (4) 

We assume that (i) the scattering centers are infinitely heavy and that 
the scattering is inelastic and anisotropic; and also that the target is 
polarized along the polar axis, so that (ii) local coordinate systems on 
scattering centers are parallel. 

The cos 0 n + 1 of the particle after the (n + 1)th collision is given by the 
spherical trigonometry formula (7) 

cos ~gn+ t = cos ~gn cos ~n + sin ~9 n cos Zn sin ~n (5) 

where ~9 n is the angle with the normal, ~b n is the angle of deviation, and Zn 
is the change in the azimuth (see Fig. 1). 

Let us also assume that (iii) the scattering differential cross section is 
such that ~bn = ~9, and that ( iv)Z, = Z = const. Since the target is polarized, 
all scattering angles are measured in parallely transported coordinate 
frames on the scattering centers (Fig. 1). These two assumptions lead to 
deterministic scattering model 

(/)3 + 1 = COS Z + ( 1 - cos Z)( co3)2 (6a) 

co~ = cos ~9 n (6b) 

which can be contrasted with the Monte Carlo simulation of neutron 
scattering, with the angles On, Zn treated as random numbers in [-0, re] (in 
the case of isotropic scattering these random numbers must be uniformly 
distributed in [0, rc])3 7) The dynamical process of neutron scattering (6) 
can be considered as a caricature of a real process, yet even so simplistic a 
model may be useful as a basis for interpretation. 

Equation (6) can be written in another form, equivalent to (2), 

a n +  1 = 1 - - # a  ] 

# = cos Z(cos Z -  1) (7a) 

a ,  = col/cos Z (7b) 
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Zn+~. 
\, 

Fig. 1. Geometry and parameters of the scattering model: the angle with the z axis is ~, the 
deviation angle is ~, the change of the azimuth due to collision is X, the free path length after 
the nth collision is ln, and the position on the z axis is z,. 

Of  course, the consistency condition, # E [0, 2],  must  be fulfilled. This 
means that  X ~ [-~z, -3zt] must  hold. 

A quant i ty  of  interest is the posit ion of  the scattered particle. Let zn be 
the z coordinate  of  the particle after the n th  collision. Then 

z .  + 1 = z .  + l .~o 3 (8 )  

where l, is the free path length after the n th  collision (Fig. 1); the 1, are 
L ~ (i.e., the process is arbi t rary apar t  f rom the condi t ion (v) = ~ ,  = 0 In < 

inelastic), which is assumed to hold. 
The z coordinate  of  the particle after an infinite number  of  collisions 

Zinr [cf. Eq. (7)] ,  

z i . r=  cos X ~ l , a ,  (9) 
n = O  

is p ropor t iona l  to the functional t ransform of the sequence {a,}.  
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In the special case I. = lr ~, where r ~ [0, 1) is the elasticity parameter 
(for r --* 1 the process becomes elastic), zinf is proportional to the generating 
function of the process (2) 

Z i n f - ~ / C O S  Z ~" r"a. (10) 
n = O  

3. C H A O T I C  R E G I M E  OF THE D I S C R E T E - T I M E  M O D E L  A N D  
D IFFERENTIABIL ITY  C O N D I T I O N S  FOR F U N C T I O N A L  
T R A N S F O R M S  

Differentiability conditions for the functional transforms associated 
with the sequence {a.} generated by (1) can be easily formulated in terms 
of the Lyapunov characteristic exponent. Let us recall the definition of the 
Lyapunov characteristic exponent 2, 

!Y 
k = 0  

We get from (1) 

' Edf( ) /dx ] '  X n  "~- X n - - 1  n - -  I n - - l ,  

In ~---~]x (xk) (11) 

n- -1  

x'.= I-I af(xi)/dx, (12) 
i = 0  

where the chain rule was used and the prime indicates derivative with 
respect to u = x 0. It follows from Eqs. (11) and (12) that the asymptotics of 
the derivative of the functional transform (3a) is given by 

F'(u; I~, {l.}) ~ ~ s. ,  s. = sign(a'~)l, exp(2n) (13) 
n 

Let us recall that the necessary convergence condition for a series ~ .  s. is 
of the form s.--, 0 for n--* oo. It thus follows that the nondifferentiability 
conditions for the general functional transform and for generating functions 
read 

l. exp(2n) 7~ 0 for n ~ o o  (14a) 

r exp(2) > 1, r s l-0, 1) (14b) 

respectively. The conditions (14) can be fulfilled only for 2 >  0 (note that 
L = ~n I. was assumed to be finite). On the other hand, positive Lyapunov 
characteristic exponents mean the presence of the chaotic regime. (3) 

The above arguments rely on the assumed knowledge of the Lyapunov 
characteristic exponent 2. On the other hand, for # < 2 the 2 values were 
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determined numerically and so are subject to some uncertainty. Further- 
more, more careful analysis is needed to determine whether F '  can be 
represented by the power series (3b). 

We have calculated F(u; #, r) for several values of r and ~t for # > ~tc 
and for which the characteristic Lyapunov exponents were calculated/8) It 
is important that the computer computations can be compared with exact 
analytic results for/z  = 2 since in this case the corresponding equation (2) 
can be solved (in this case the corresponding Lyapunov characteristic 
exponent is determined exactly). 

The substitution 

a~= - c o s  b, (15) 

analogous to that of Levy and Lessman to solve a similar equation, ~9) 
applied to Eq. (2) leads to the solution 

a,(u, 2 ) =  - c o s [ 2  n a r c c o s ( - u ) ] ,  u~ [ - 1 ,  1] (16) 

i.e., a n are the Tschebyschev polynomials of order 2 ". 
The generating function F(u; 2, r) reads 

F(u;2, r) = - ~ r" cos[2" a r c c o s ( - u ) ]  
n = O  

(17) 

r e  [0, t), u e  [ - 1 ,  1]. The problem of differentiability of F(u; 2, r) can be 
reduced to the analysis of the differentiable properties of the Weierstrass 
function 

W(x;q,r)= ~ r" cos( qnx ), r e [ 0 ,  t), x e ( - ~ , ~ )  (18) 
n = 0  

since 

dF/du = -(dW/dx)(1 - u 2) -1/2, x = a r c c o s ( - u )  (19) 

Weierstrass proved that for odd integer q, q > 1 + 3n/2, the function 
(18) was continuous and nondifferentiable. It was the  first example of a 
function with such a property. This result was sharpened by Hardy, who 
demonstrated that the condition qr > 1 was sufficient for W(x; q, r) to be 
nondifferentiable/1~ The Hardy condition can be applied directly to 
F(u; 2, r), Eq. (17). It follows that F(u; 2, r) is a continuous, nondifferen- 
tiable function of v for r > r C = 1/2 and also that for p = 2 the Lyapunov 
characteristic exponent is equal to In 2 [cf., Eq. (14b)]. 
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4. C O M P U T A T I O N A L  RESULTS 

The generating functions were computed for several values of # and r 
from Eqs. (2) and (3c). In each case F(u;#, r) was calculated for 2000 
values of u = ao uniformly distributed in the interval [ - 1 ,  1 ] or in its 
subinterval. The number of terms included in (3c) depended on r. All terms 
rna, for which the condition r " >  e was fulfilled were taken into account. 
The value of e adopted in calculations varied from 10 4 to 10 9; e was 
selected as the largest number such that the form of F(u; p, r) did not 
change after decrease of the value of e. 

We first computed the functions F(u; 2, r) (Figs. 2-6), which, as shown 
in the preceding section, become nondifferentiable for r > r c =  1/2 (i.e., 
2 = l n  2). 

Figures 2, 3, and 6 demonstrate the increasing fractal character of the 
curve F(u). Figures 3-5 show the neighborhood of the unstable fixed point 
u = 0.5 at increasing magnification. Again, the fractal character of the curve 
can be seen. 

Figures 7-11 show the functions F(u; 1.684, r). For # =  1.684 the 
Lyapunov characteristic exponent determined numerically is equal 0.418, (8) 
and so re=In0.418 =0.658. Figures 7, 8, and 11 show again an increasing 
fractal character of the curve F(u) for increasing r. Figures 8-10 present the 
neighborhood of the unstable fixed point u=0.5289 at increasing 
magnification. 

Figures 12-15 show the generating function for # =  1.7664, 
corresponding to the noisy three-cycle mode, ~2) for which the Lyapunov 

z, 2 

z I 

/ 

f r 

t 

/ 

r, j 

't 
1 

v ~ I03d v v+103d 

Fig. 2. The generating function F(u;  2, r), r =  r C =0.5 (2 = In 2), calculated for 2000 points 
uniformly distributed in the interval [ u -  103d, u +  103d], u = 0 ,  d =  10-3; z 1 = -1.9031, 
z 2 = 1.0000. 



584 Oknifiski 

z I 

~ 2 -  

- > . L  ~. -i +,  �9 * , ~  

_ , . . . . . .  . , .  :. ; ~ ,  ~ ~ + ~  .. �9 " ~ . , ~ " .  i;:; '~ ~,1 "~ : 

~*+ ~'" ~e ~- L~ ": ~, ' . , -~ 

~ ~, :. ; ~ ,  , 

~'~ .~3 
41 I ' .  k~ 

I l I I I I ! I I I 

~ - l O ' ~ d  ~ v + 1 0 ~ d  

Fig .  3. S a m e  a s  in  F ig .  2, b u t  w i t h  r = 0 .75 ,  z l  = - 2 . 8 6 7 7 ,  a n d  z 2 = 1 .9998.  
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Fig .  4. S a m e  as  in  F ig .  2, b u t  w i t h  r = 0 .75 ,  u = 0 .5 ,  d = 1 0 - 6 ,  z l  = 1 .7587 ,  a n d  z 2 = 1 .9998.  
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Fig. 6. Same as in Fig. 2, but  with r = 0 . 9 ,  z L = -7.1992, and zz=4.8711.  
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Fig. 7. The generating function F(u; 1.684, r), r = r c = 0.658 (2 = 0.418), calculated for 2000 
points uniformly distributed in the interval [ u - 1 0 3 d ,  u +  103d], u = 0 ,  d =  10-3; z l =  
-1.0047,  z 2 = 1.5451. 

z 2 . 

,~" ~ ~:...~e. 

a, / 

/ 
I I 

'v- I 03d 
, ~ j , j A av.103d I 

v 

Fig. 8. Same as in Fig. 7, but  with r=0 .75 ,  z~= -0.7561, and z2=2.1012. 
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Same as in Fig. 7, but with r=0 .75 ,  u=0.5289093, d = 1 0  -6, z1=2.0702, and 
z2 = 2.1155. 
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Fig. 10. Same as in Fig. 7, but with r=0 .75 ,  u=0.5289093, d = l O  -9, z1=2.1142 ' and 
z2=2.1156. 
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Fig. 11. Same as in Fig. 7, but with r=0 .9 ,  z 1 =0.9278, and z2=4.7700. 
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Fig. 12. The generating function F ( u ; 1 . 7 6 6 4 ,  r), r = 0 . 7 5  ( 2 =  - 0 . 0 3 ) ,  calculated for 2000 
points uniformly distributed in the interval [ u -  103d, u + 103d], u = 0, d =  10-3; zl = 
- - 1 . 2 8 5 5 ,  z z = 2 . 0 5 0 3 .  
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Fig. 13. Same as in Fig. 12, but with u ~-0.5208333, d =  10-~, zl = 2.0058, and z2 = 2.0830. 
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Fig. 15. Same as in Fig. 12, but with r = 0 . 9 ,  Zl = -0 .9227 ,  and  z2=4.4869 .  

characteristic exponent is negative, 2 = - 0 . 0 3 .  (8) Figures 12 and 15 
demonstrate the dependence on r, while Figs. 12-14 show the 
neighborhood of the unstable fixed point u=0.5208 at increasing 
magnification. The curves are piecewise smooth and have complicated 
structure in between�9 It follows, however, that they are differentiable, since 
for/~ = 1.7664 the Lyapunov characteristic exponent is negative (Section 3). 

5 .  D I S C U S S I O N  

Implications of the analytic and computational results for the deter- 
ministic scattering model described in Section 2 are discussed in Section 5.1. 
Connections with random walk processes are pointed out in Section 5.2. 
Both models are compared in Section 5.3. 

5 . 1 .  D e t e r m i n i s t i c  S c a t t e r i n g  M o d e l  

T h e  q u a n t i t y  zi.f/l can  be w r i t t e n  in the  f o r m  

zi,r/l = cos(z) F[cos(8o)/COS(g); #, r] (20) 

[cf. Eqs. (2), (3c), (7b), and (10)�9 It is a continuous and also a differen- 
tiable or nondifferentiable function of ,9 o (where ~o is the initial angle 
between the velocity vector of the particle and the z axis), depending on the 
choice of the parameters Z, r. 
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More precisely, the continuous function Zinf(t~O) should be nondifferen- 
tiable for # corresponding to the chaotic regime of the process (2), where 
/ x = c o s z ( c o s z - 1 )  and r>rc, with rc=exp(2) and 2 the Lyapunov 
characteristic exponent [cf. (14b)]. The angle Z corresponds to the change 
in the azimuth (Fig. 1), while r controls the elasticity of the scattering 
process; the free path length after the nth collision is equal to l, = lr", so 
that the process is elastic for r = 1. 

The theoretical results of Section 3 can be applied directly to a more 
general scattering model (9), provided that the parameters {l,} as well as 
the Lyapunov characteristic exponent 2 are known. The nondifferentiability 
condition in this case is given by (14a). 

We close our discussion with some more general remarks. Neutron 
scattering is a good example of Brownian motion and it can be simulated 
by Monte Carlo techniques. We have substituted the process of stochastic 
scattering by a deterministic model. It would be interesting to see whether 
the model of Section 2 leaves some properties of the Brownian motion 
unchanged. 

Let us recall that the path of a particle undergoing Brownian motion 
is continuous and nondifferentiable/12) Let an initial distribution of 
Brownian particles be spherically symmetric. Then, after a finite period of 
diffusion, a new surface is formed. This surface is nondifferentiable since 
every particle path is nondifferentiable. 

Let us now consider the deterministic scattering model of Section 2. 
The three-dimensional generalization of Eqs. (6) and (8) reads [,cf. Eq. (4)] 

(Xn+l, y,+l,Zn+l)=(xn, yn, z,)+ln(cO~,fO],O93) (21) 

c03+1 =cos  Z+ (1 - c o s  Z)(C03) 2 

1,2 3 2'1['i (~o3)2]}/[1-(o~3) 2] (22)  1,2 = {to, ~,(1 3 o~,+1 - ~ , + I ) T  sin Z co. - 

Let us assume that an initially spherically symmetric cloud of neutrons 
with a uniform distribution of initial values of 0o, ~Oo is scattered. Then an 
initial spherically surface of the neutron cloud (Xo, Yo, Zo) transforms after 
an infinite number of collisions into a two-dimensional surface 
(Xinf, Yinf, Zinf), nondifferentiable with respect to the initial parameter ~9 o 
(and hence Xo, Yo, Zo) in the chaotic regime of the process (2), controlled 
by the parameter Z and for an appropriate choice of another control 
parameter r. Thus, in the chaotic regime of the deterministic scattering 
model, Eqs. (21), (6), and (22), some properties of the Brownian motion of 
indeterministically scattered particles are preserved. 
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5.2. Random Walks 

It is interesting that the Weierstrass function (18) is closely related to 
the random walk problems. ('3) Namely, let us consider a one-dimensional 
walk on a periodic infinite lattice. The following possible lengths of jumps 
with their appropriate probabilities are postulated (we use notation of 
ref. 13): 

-t-1 with probability CIo, 

+ b j with probability Clj, 

_+ b with probability Cll .... 

lj>O, j = 0 , 1 , 2  .... 
(23) 

where C is the normalization constant, C = 1/(2L), L = Zj lj < oe. Then the 
probability of a given displacement being equal to l is 

p(l)=(1/2L) ~ lj(a,,b,+a,,_b,) (24) 
j = O  

The structure function for the random walk p(k), i.e., the Fourier 
transform of p(l), is equal to 

p( k ) = ~ p( l) exp( ilk ) = (l/L) ~ lj cos( bJk ) 
l j = o  

(25a) 

It follows from (3a), (16), and (25a) that for b = 2 the structure function is 
proportional to the functional transform of the sequence {an(u;2)}, 
u-- - cos  k, generated according to Eq. (2) 

p(k)=-(l/L) ~ l ja j ( -cosk;2)=-(1/L)F(-cosk;2 ,  {/j}) (26a) 
j = O  

In the special case considered in ref. 13, l j=N -j, we get [cf. Eq. (18)] 

N -  1 ~ N j cos(bJk) =--N~N 1 W(k; b, N -1) (25b) 
p ( k ) =  N j=o 

It follows from (17) and (25b) that for b = 2 the structure function of 
the Weierstrass random walk p(k;2, r)=p(k)  is proportional to the 
generating function F(u; #, r) 

p(k;2, r ) = - ( 1 - r ) F ( - c o s k ; 2 ,  r), N - l = r ,  L - l = l - r  (26b) 

It can be shown that the trajectory of the Weierstrass random walk, 
performed on a periodic one-dimensional lattice, traces out self-similar 
clusters; this follows from the fractal structure of the Weierstrass 



Chaos in Discrete Maps 593 

function. (13) Let us recall here that also F(u;#, r) for #>#c ,  r>rc, are 
fractal. 

Let us consider now a general generating function (3c). It follows from 
Eqs. (26b), (6b), and (7b) that for # < 2  we should consider the form 
{-const'F[cos(k)/cos(z); #, r]} as the definition of a structure function 
p(k; #, r) of some random walk process [see also Eqs. (28)]: 

p(k; #, r) ~ -const .  F[cos(k)/cos(z); #, r] (27a) 

Obviously, the Fourier transform of p(k; #, r), 

p(l; #, r) = Y' p(k; #, r) e x p ( -  ilk) (27b) 
k 

i.e., the probability of a given displacement being equal to l, must not 
contain negative terms. 

We have performed test computations of Fourier transforms of 
{-F[cos(k)/cos(z);#,r]}. The Fourier transforms of the generating 
functions are real and positive within numerical accuracy for all # e [-0, 2]. 
Furthermore, for # = 2, p(l; #, r) is very similar in form to p(l; 2, r), i.e., to 
the Fourier transform of - ( 1 - r )  F ( - c o s  k; 2, r), though there are small 
nonzero coefficients in the Fourier spectrum for some l not equal to U, 
j = 0, 1, 2,.... For # significantly smaller than 2 the contributions for l = 2 j 
still dominate, but contributions from l r 2 j are not negligible. 

We can thus associate with discrete maps of form (2) a random walk, 
defining the corresponding structure function as follows: 

p(k; #, r )=  [l/C(#, r ) ]{-F[cos(k) /cos(z) ;  u, r]} 

= [l/C(#, r)] ~ c,(#, r) cos(nk) (28a) 
n = 0  

C(#, r) = ~ c,(#, r) (28b) 
n 

The probability of a displacement being equal to l is thus given by 

p(I;#,r)=(1/2C) ~, c.(#,r)(6,,.+~, ~), cn>~O (29) 
n = O  

and for #---2 approximates well the random walk process (23), (24). 
For # < 2 ,  apart from possible jumps of lengths +2  j (of high 

probability), jumps of other lengths are possible, including the possibility 
that the particle does not change its position [c0(p, r) > 0]. 
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5.3. Closing Remarks 

We c o m p a r e  briefly the two models  descr ibed  in Sections 5.1 and  5.2. 
Not ice  tha t  the two d imensionless  quant i t ies  zinf/l and  p(k ;  ~, r) [cf. 
Eqs. (20) and  (28), respect ive ly]  depend  on the genera t ing  funct ion (3c) in 
the same manner .  I t  is in teres t ing tha t  while zinr/l is a de terminis t ic  
quant i ty ,  the F o u r i e r  t ransform of  p(k ;  #, r), p(l; #, r), has a probabi l i s t i c  
in te rpre ta t ion .  

Let  us also note  here tha t  in the de terminis t ic  models  (1) r a n d o m - t y p e  
behav io r  was observed.  Numer i ca l  results for the m a p  

an+ 1 = an -- # sin(2na.) (30) 

show tha t  for k t > # c = 0 . 7 3 2 6 4  the process  can leave the interval  
[ - 1 / 2 ,  1/2] and  a r a n d o m  walk on  the real  axis is performed.  (14) 
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